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ABSTRACT 

Three statistical theories of turbulence are applied to thermal convection 

between infinite slippery plates in the limit of infinite Prandtl number. The 

range of Rayleigh number R investigated is 657 L R(1.25 x l o 4 .  The theories, 

which a re  compared in a ser ies  of numerical calculations, are the direct inter- 

action approximation, the quasi-linear approximation, and the quasi-normal ap- 

proximation. The direct interaction approximation gives results for  the evolu- 

tion Nusselt number in good agreement with some simple exact solutions to the 

problem. The flow predicted by this method is very presistent. Turbulence 

first appears just at critical R and its intensity gradually increases with increas- 

ing R. The quasi-normal approximation gives satisfactory results for R 52000, 

but some of the initial value problems lead to an unphysical negative tempera- 

ture autocorrelation spectrum for larger R. In none of the initial value problems 

for R > 2 x l o 3  did the quasi-normal procedure yield a sensible stationary state. 

The quasi-linear approximation appears to upperbound the heat transport given 

by both the other approximations predicting about 10% larger heat transport than 

the direct interaction approximations. 

. 
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I. INTRODUCTION 

This paper presents results of an application of the direct interaction (DI) 

1 
approximation to thermal convection at infinite Prandtl number, in a fluid con- 

fined by infinite, slippery, infinitely conductive horizontal boundaries. Results 

are presented for initial value problems in which the temperature and velocity 

covariances a re  allowed to evolve to  their steady state values. The infinite 

Prandtl number ( ~ - 0 0 )  regime is particularly simple because the non-linear terms 

in the momentum equation vanish, so that one has to study a single non-linear, 

scalar equation for the covariance of the temperature field. Since the direct 

interaction equations a re  formidable, it is attractive to study first a relatively 

tractable situation to assess  the method's realism before addressing the more 

interesting and difficult case of convection at finite Prandtl number CT. 

There is also presented a comparison of the DI approximation with the 

"quasi-linear I t  approximation, the "quasi-normal " appr o ~ i m a t i o n , ~  and a direct 

integration of the amplitude equations for a reasonably large ensemble of initial 

data. The first three approaches a re  methods of closing the hierarchy of moment 

equations. 

2 

The quasi-linear or "mean-field" approximation, discards third order cumu- 

lants. This is equivalent to neglecting deviations of the bilinear terms in the Navier 

Stokes equations from their horizontal averages. The method appears to have 

some quantitative validity, for high Prandtl number fluids?' 

have several defects, including the inability to assess  the importance of the 

It is known to 
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t e rms  it omits. For systems which have no mean fields, this method gives the 

trivial answer of dissipative decay of the initial flow and temperature fields. 

3 
The quasi-normal approximation evaluates fourth order moments as if the 

flow and temperature fields were normally distributed. This approach has been 

investigated for isotropic turbulence by Ogura? who solved some of the initial 

value problems and found the unphysical result of a partly negative kinetic energy 

spectrum. However, failure for the isotropic problem does not preclude success 

in problems in which there is a mean field present. Interaction of fluctuations 

with the mean field may stabilize the system. 

The direct interaction approximation may be viewed as a logical improve- 

ment on the quasi-normal approximation. Both approximations give quantitative 

values for an effective dissipation acting on each degree of freedom of the fluid. 

The expressions for this dissipation involve functions which represent the average 

response of a mode to an infinitesimal initial perturbation. The quasi-normal 

approximation yields response functions determined wholly by molecular dissi- 

pation. The direct interaction approximates the effects of eddy viscosity, in 

a self consistent fashion. 

The direct numerical integrations of the equations of motion serve to assess 

the validity of the statistical methods described in the preceding paragraphs, 

especially in lieu of any experimental data for  slip boundary conditions. These 

results were obtained by constructing a random set of initial data, allowing each 

realization of the flow to evolve in three dimensions, and then ensemble-averaging 

the results, thereby obtaining values for the heat transport, and correlation functions. 
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The numerical results suggest that the direct interaction approximation 

may be satisfactory for thermal turbulence. The convective heat transport 

predicted is in good agreement with the direct integrations of the Boussinesq 

equations. The auto-correlation functions have very large relaxation times, 

suggesting an almost static flow for the range of Rayleigh numbers investigated 

(R < 1.25 x lo4). The behavior of the steady-state Green's functions indicate that 

the system is close to being marginally stable. That is to say, a large-scale 

temperature perturbation decays very slowly under the joint action of the mean 

field and the eddy-dissipation processes. The fact makes the predictions of the 

direct interaction approximation agree closely with those of the quasilinear 

method with regard to the steady state value of the Nusselt number. The Green's 

functions predicted by the two methods a r e  completely different. 

The quasi-normal approximation appears to be a reasonable approximation 

only for  R < 2000. For R > 2000, the approximation predicts the development of 

a negative value for  the square of the temperature fluctuation field for some 

initial data investigated. It thus appears that the stabilizing influence of the 

fluctuation-field-mean-field interaction is very limited, and the eddy-type terms 

introduced by the direct interaction represent an essential feature. We should 

point out, however, that our results for the initial value problem do not preclude 

the validity of 'the quasi-normal approach for steady-state turbulence at any 

value of R. 
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II. THE EQUATIONS O F  MOTION 

Under the stated boundary conditions, the infinite -u Boussinesq equations 

for the horizontally averaged temperature field T ( z ,  t )  and deviation O ( Y ,  t )  of 

temperature T(Y, t ) from T( z ,  t ) may be reduced to 

(g t q) e; = 

rn P .,q 
a=a +a" 

n . a  

where; 

and 

with 
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In Eqs. (1) and (2), Ona is the component of e( i!, t ) proportional to e i2 'si s i n  nn- z , 

and Tn is the component of T( z ,  t ) proportional to s i n  7-r z . A brief derivation 

of Eqs. (1) and (2) from the Boussinesq form of the Navier Stokes equations is 

given in Appendix A. 

The nonlinear terms in (1) are  sorted into two groups: the te rms  propor- 

tional to B,,, called the mean field terms, and the terms proportional to M, 

called the fluctuating self interactions. The M coefficients satisfy 

from which it follows that the volume-averaged square of the temperature field 

satisfies 

= l t rZnTn (3) 

Equation (3) states that the flux of heat into the system (the right hand side) is 

equal to the time rate  of accumulation of the heat energy plus the rate of 

molecular dissipation of macroscopic motion into heat. 
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III. STATISTICAL THEORIES O F  TURBULENT CONVECTION 

Our primary goal is to determine the temperature autocorrelation function 

matrix, 

The average ( ) is over an initial ensemble, in which the 6' ,,a are assigned normally 

distributed values, and have a covariance matrix 9,: (0 I 0). 

genity in the horizontal, and identity of horizontal averages to ensemble averages 

are assumed. Homogeneity in the horizontal implies 

Statistical homo- 

(t jff(t)B;' ( t ' ) )  = 0 1 unless ' : + " a '  = 0 .  

The heat transport per unit area through the convecting layer is determined by 

(2) and the assumed equivalence between horizontal and ensemble averages. 

An equation for $ may be obtained by multiplying (1) by 19," ( t ' ) and averaging: 

P 

where 

5 m p q  a a  ' a "  ( t  I t ' )  = (t jm-"(t ' )8pa' ( t ) O q a " ( t ) ) .  
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The remainder of this section outlines several theoretical approaches for 

obtaining closed equations for expressing the triple moment 3 as a functional of 

I) and B. The particular closure approximations to be studied a r e  the quasi- 

linear approximation (in which 3 = 0) , quasi-normal approximation, and the 

direct interaction approximation. Al l  three of these approximations have been 

discussed in some detail elsewhere, lB 2s  

tended to form a unified reference frame for the remainder of the paper. The 

only new possible ingredient is in the discussion of the quasi-normal approxima- 

and the discussion to follow is in- 

tion. Here, some new non-diagonal correlation functions $nm occur, which are 

zero in isotropic turbulence. 

a. The Quasi-Linear Approximation 

If the horizontal exchange of heat and energy is very weak compared to the 

vertical exchange induced by the term B$J it may be argued that 3 2: 0 is a good 

approximation. This procedure - called hereafter the quasi-linear approximation - 
has been investigated in some detail?'4 It appears to be a fairly accurate and 

consistent method for large Prandtl number fluids. The mean-field terms,  in 

an initial value problem, inhibit the continued growth of an initial perturbation 

by modifying the mean field through (2). This feedback mechanism stabilizes 

the system, yielding an eventual steady state. It is not clear that once the 3 term 

is reintroduced, the mean-field terms still play this same role. 
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b. The Quasi-Normal Approximation 

A systematic formal procedure for including approximations to the triple- 

moment transfer term is discard of cumulants procedure: An hierarchy of 

equations for all the moments with simultaneous time arguments is first obtained. 

An equation for 3 is obtained by multiplying-(1), by 8,"' ( t )  

semble averaging, and adding the result to similar expressions obtained from 

(1) by permuting the indices n, p, and q. The equation for 3 thereby obtained is 

( t ) ,  en- 

,,I I v I ,I I ,  I v I ,,I / v I ,  111 I v 

Qaqrav-a -a  f Mpar ," a Q-:rav a 
t - a  

r , v , d " , a l "  

+ M i r v "  I ,  I , ,  a I v Qmyrav a ' ' I  a " } , ( 6 )  

where 

a a I a I ,  

Qnmp r 

is a fourth order moment. An equation for  it may be obtained by an algorithm 

like that used to obtain the 3 equation. 

By proceeding in this way, a hierarchy of equations is obtained which re- 

late the moments of order n to those of order  n + 1. To obtain closed equations 

of motion for  a given moment (for example 3 )  the higher-order moment ( Q )  is 
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eliminated from the equation of motion by assuming that the form of the higher 

order moment is the same as it would be i f  the ena ( t ) were Gaussianly dis- 

tributed. Thus, in the fourth order closure, 

Equations (5), ( 6 ) ,  and (7) now comprise a complete set of equations for  the de- 

termination of $( t , t ). 

The closure procedure using (6) and (7) is a generalization of the quasi- 

normal approximation - originally proposed for isotropic turbulence by Tatsumi 

and by Proudman and Reid.3 Ogura has shown numerically that the method is 

not satisfactory for isotropic turbulence; an integration of some sample initial 

data developed an energy spectrum with negative regions aftek a short time, for 

moderate Reynolds numbers. 

5 

Higher-order cumulant discard approximations may in principle be an im- 

provement over the Tatsumi-Proudman-Reid quasi-normal approximation, but 

to integrate numerically any such higher order scheme appears prohibitively 

difficult. 

The quasi-normal equation for 4 may be put into more convenient form by 
0 

introducing the Green's function G n m  ( t , t I ), which satisfies the following 

9 



* ,.- . .. 

equations : 

with 

Using ( 6 ) ,  (7), and (8), 3 may be evaluated as 

where; 

c. The Direct Interaction Approximation 

In the DI approximation, the evaluation of 2 is accomplished through the 

g,;m ( t  1 t ' ), whose role in the theory is intermediary of a Green's function, 

similar to the G function introduced in the quasi-normal theory. This function is 

defined as the ensemble-averaged response of mode ( I , ; '  at time t to an infinitesimal 

0 

. 
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impulsive perturbation in mode Oma at time t I .  In terms of the g ' s ,  the direct 

interaction approximation for 3 is 
7 

8 
The DI approximation for  g,: (t I t is 

rt 

. Equations (loa) and (lob) determine +ni (t  1 t ' )  given the initial values of 

+Zm ( 0  I 0 )  ' 
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The DI equation for gnz bear some similarity to that for en:. Equation (lob) 

contains an additional convolutional term which represents the relaxational effect 

of eddy dissipation. In the limit R - 0, g,", and E,", become identical. 

The structures of the quasi-normal and direct interaction approximations 

a re  similar with regard to ,7( t 1 t ' )  also. The quasi-normal equations may be 

obtained from the DI equations by making on the latter the following alterations: 

1. Change g,,", ( t I t ' ) to 6: ( t I t ' ) by deleting the last term of (lob). Then, 

2. Replace Gn: ( t  1 t ' ) in (loa) according to 

In the direct interaction equations, (5), (loa), and (lob), three basic te rms  

determine the behavior of $ and g:  (1) the dissipation terms,  proportional to 

v z  ; (2) the mean-field terms - the first te rms  on the right hand side of all the 

equations, and (3) the fluctuating self-interactions, which are the last te rms  in 

the equations. Only the first two of these t e rms  enter the net entropy balance. 

A physical interpretation of the direct-interaction treatment of the :\-self- 

interactions may be given in te rms  of a generalization of eddy-dissipation con- 

cepts. The right hand side of (loa) consists of basically two types of terms: 

(1) an input term to the mode a ,  and two drain te rms  from a. The input te rms  

12 



contain the factor 

and the drain terms contain the factors 

J g t S i  ( t  1 t ' I )  dt '' 

The conservative nature of all three statistical procedures discussed here 

may be verified directly from (5), (9) o r  (loa), on using the identity the M coef- 

ficients satisfy. For the direct-interaction method the conservation law is in- 

dependent of the values of g,",. 

IV. SOME GENERAL COMMENTS ON THE. STATISTICAL THEORIES 

Before proceeding to the numerical results, it is worthwhile to consider 

first certain consistency properties and some 

tions for the statistical approximations. 

general properties of the solu- 

The most obvious consistency property to examine is the conservation of 

entropy (3). All the approximation considered here satisfy this equation, as 

stated previously. A second, and perhaps less obvious consistency condition on 
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the methods has to do with bounds on the $nm ( t I t ' ) , which arises from the 

fact that these quantities are ensemble averages of products of real temperature 

fluctuation fields, 8( r , t 1. From this fact and by Schwartzl inequality it follows 

that 

o r  defining the correlation coefficient, 

For the quasi-linear approximation, Rnm ( t  I t ' ) = 1 because 8 is an exact 

solution of amplitude equations , without phase mixing (fluctuating self interactions 

are discarded). 

The quasi-normal approximation deals only with the time-diagonal t e rms  

$,,,,, ( t  1 t ) .  It does not assure  R n m ( t  1 t )  5 1. 

In the direct interaction approximation, 1 Rlln, ( t I t ' )I < 1 for all t , t '. This 

follows from the fact that the approximation corresponds to  an exact solution for  

a set of model amplitude equations. This point has  been extensively discussed 

by Kraichnan. 9 

The coefficients RIln,  ( t 1 t ' ) provide a measure of the ra te  of change of the 

temperature and velocity patterns in a typical realization. Consider a statistically 
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stationary situation, for which Rnm ( t I t ' ) depends only on the time difference 

7 

large. On the other hand, if R n m  (7) decays very slowly, there is nearly steady 

cellular convection. If R n m  is independent of 7, the system is said to be static. 

I t - t ' I. If Rnm ( 7 )  decays rapidly a s  7 increases, this rate of change is 

A static form for Xm need not preclude a random irregularity of the spatial 

pattern of the flow. 

The direct interaction approximation may admit of static solutions, as has 

been pointed out by Kraichnan." To see that the assumption of t- and t '-independent 

$J ( t  1 t ' ) is consistent with the direct interaction equations in the limit t -a, 

it is only necessary to examine (5), (loa), and (lob) and recall that as t+a both 

$J and g should relax to functions of argument 7 = t - t 'only. Then (5) and (loa) 

imply that the static solution for $I is a function of the integral of g, 

An equation for  Snm may be obtained by integrating (lob) over t ,  and using the 

boundary conditions on g. This equation is 

1 

15 



assuming, of course that the integral of g exists. The static solution is thereby 

reduced to  a set of algebraic equations. The question of whether these solutions 

are stable a s  compared to the dynamic solutions is unanswered. Conceivably the 

static solutions are stable below a certain critical Rayleigh number while the 

dynamic solutions a re  stable above. 

The quasi-normal approximation cannot distinguish static and dynamic 

statistically stationary flows because it deals with only simultaneous correlation 

coefficients R,,,,, ( t I t ) . 
A third consistency requirement comes from the requirement that the tem- 

perature field T(Y,  t ) be limited by the boundary temperatures T( 0 ,  t ) = 0, and 

T( 1 ,  t ) = -1.0, provided the initial temperature field is so limited. This comes 

about because there a re  no heat sources in the fluid. This constraint on T(Y, t )  

implies 

If the constraints are not imposed at t = 0, they are applicable only as t +a, 

in which limit the smoothing action of the diffusivity erases transient behavior 

making the statistical moments settle down to final state values. 

None of the statistical approximations discussed in this paper give a priori  

assurance of conforming to all the moment bounds onT. The only method for 

which results a re  available is the quasi-linear approximation, and they indicate 

violations of the bounds for certain problems. Indeed, the contrary would be 

16 



surprising, since this approximation omits some of the te rms  responsible for 

the bounds. Recently, Durney 

study of convection in spherical shells. He finds that for RZ 2.4 x l o4  the odd- 

ordered moment bounds are violated in a thin region in near the boundary layer. 

The violation is slight but still none the less present. 

11 
has applied the quasi-linear approximation to a 

For the problem of plane parallel convection the quasi-linear approximation 

does not lead to violation of the bound on T for either free or rigid boundaries, 

o r  for  any value of R ,  provided the system has reached the steady state. This 

12 statement is in apparent contradiction to conclusions reached by Deardorff, 

who reported violations of the bound conditions near the boundary, for a par- 

ticular initial value integration. 

V. RESULTS 

a. Numerical Procedure 

The numerical procedure for integrating the statistical equations for 

$nm (t I t ')  is described in detail in Appendix C. The complexity of the equa- 

tions imposes severe restrictions on the. number of modes explicitly treated, 

and on the range of Rayleigh number, R .  The present paper restricts itself to 

only five vertical wave numbers, and up to three horizontal wave numbers to 

describe the $,: ( t  I t ' ) field. The results of the next two sub-sections are 

obtained by approximating the a-dependence of $ ( a )  by a constant value for 

l/fi l a  5 fi and zero elsewhere. In section Vc, in which greater accuracy is 

desired three values of a are included to represent $ ( a ) .  Details of both methods 

of numerical approximation are given in appendix C. 

17 



to difference the equations, and the trapizoidal rule to evaluate the convolution 

integrals in (loa) and (lob). The procedures guarantee exact conservation 

properties for the system. 

b. Results for the Direct Interaction Method 

The first point to establish concerning the validity of the direct interaction 

method in whether or  not it faithfully reproduces the onset of convection just 

above the critical Rayleigh number, Rc = 657.71. To test this point, three runs 

were made at R = 700, 830, 1000, using only two vertical modes and a single a. 

These runs used unaveraged Jna , and vna coefficients with a = l/fiy in order to 

facilitate a comparison of the numerical results with results known from 

perturbation theory. The parameters of these runs were a = l/fi, al = fi, 

and A = 0.20. The initial value the $nm spectrum was 

$nm = o , for n # m . 

The initial Tn field was such that (dT,/dt) = 0 for a +bm field given by (13). The 

above $ spectrum is that implied by perturbation theory, a s  for example that of 

Malkus and Veronis. 

compared with results of other statistical theories. This value of t is sufficient 

in these cases to assure I $, ,/$, , I 5. 0.006. 

13 The values of Nu for  t = 8.0 a r e  shown in Fig. 1, and a re  

I The values of R , ,  (t 1 t ')  and R,,  (t  1 t ' )  for the R = l o 3  run is shown in 
I 

Fig 2. These curves indicate very long correlation times, which implies a very 
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presistent flow. The Green's functions g,, (t I t ') and g,, ( t  1 t ' )  are shown 

in Fig. 3. These results are  in good agreement with the analysis of the two mode 

static system analyzed in Appendix B (cf. B12 and B13), which indicate an 

extremely slow decay of small perturbations introduced in the flow. Results for 

the R ( t  1 t ') and g(t I t ' )  at the other values of R show an entirely similar 

behavior e 

Some results for R = 4 x l o 3  are shown in Figs. 4-7. The parameters, for 

this case are, M = 5, a. = l/B, al = fi, and A = 0.05. The initial value for 

$nm is that obtained from the symmetrized single - a hexagon solution. Figures 

4, and 5 gives the correlation functions R i j  ( t  I t ' ) ,  fo r  t = 1.5. We surmise 

from these figures that at R = 4 x 10 3,the solutions are no longer nearly static 

in character. This point is not entirely clear from the numerical analysis 

since the solutions have not entirely reached steady state at t = 1.5, and con- 

tinuing the calculation beyond t % 2 by the time forward integration technique 

becomes prohibitive in terms of machine time. 

The Green's functions a re  given in  Figs. 6,  and 7. Again, note the slow 

relaxation of the large scale mode, g, ,  . A striking feature seen in these curves 

is the qualitatively different behavior between the even-even modes and the odd- 

odd modes. All the odd-odd Green's functions are "locked in" to  the behavior 

of G 1, and have quite long relaxation times. None of them develop a negative 

value. The even-even modes are also "locked'in'! to the behavior of G,, . They 

all develop negative values, and their time integral is quite small compared, say, 

1 9  



to 5;'. This behavior to reminiscent of that predicted by (B12) and (B13), and 

makes the even-even $nm (t I t )  correlation matrix elements very small. 

Figures 8 and 9 give some results for R = lo4 .  These results a re  similar to 

the corresponding ones found at R = 4 x l o 3 ,  but the system appears to be less  

static. 

Figs. 4 

C. 

This  is suggested by comparing the correlation coefficients as given in 

and 9. 

Results for the Quasi-Normal Method 

The equations for this method are  obtained from (5), (loa), and (lob) by 

eliminating $(t I t ')  using (ll), and replacing the G equations by (8). Numerical 

results are first presented for the two mode system described at the beginning 

of Section V (b). 

For R? 2000 the two-mode quasi-normal results appear to be satisfactory. 

The evolution of the system from the initial state prescribed in (12) is reasonable 

and closely resembles the direct interaction results. Values for the Nusselt 

number, N u ,  a re  given in  Fig. 1, and a r e  compared to results for the other 

methods investigated. The steady state values of NU a r e  consistently lower for 

this method than for the DI or  quasi-linear method. 

For  R 2 2000 the quasi-normal procedure does not give sensible results. 

The predicted behavior of #11 ( t ) is shown in Fig. 10 for  R = 2000. It is seen 

that ( t  ) evolves into an unphysical-negative region after t 2 2.0. The 

numerical accuracy of this curve is not too great especially near the point at 

. 
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which 

that decreasing the step size made the behavior of 4 near t = 2.0 more pre- 

cipitous, so that the actual long time behavior of $,, ( t  ) is slightly more 

singular than is shown in Fig. 10. 

- 0. The time step s i ze  used in this graph is A = 0.15. It was found 

One source of this trouble is not difficult to trace. Recall first that the 

value of Nu for this method is below the quasi-linear result, for which v 1  = B,, . 
This means that €or the steady state e,, (t) ,  as given by (8) has an ex- 

ponential growth rate A = -”, + B,, > 0. 

reasonably enough that A increases with R. Now look at (Bl) as it 

specializes to the quasi-normal case. The net contribution of the fluctuating 

The numerical results show, 

terms to $ , , is, 

As the steady state is approached, the Green’s function product becomes 

e 
(2A-v 2 )  ( t- s ) . If now $ 2  > $,, as is only sensible at small R ,  the above term 

will remain finite as t -’m only if 
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Thus, as R is increased above the value for  which h = v2/2, either 11 ( t  1 t ) 

will eventually become negative as t increases o r  $J2 i $J1. The numerical re- 

sults indicate this value of R to be 22,300. 

These simple results suggest that the quasi-normal method suffers yet 

5 
another defect than that pointed out by Ogura; an inability to cope with systems 

having driving forces produced by an instability in the flow field. Of course, it 

may be argued that these results do not survive if a more realistic flow field 

consisting of many Fourier modes is studied. This does not appear to be the 

case, as is discussed in section Vd. 

d. Numerical Integration of the Amplitude Equations 

Although experimental results a r e  not yet available for free boundaries, the 

results of the statistical methods can be compared to  the numerical integrations 

of the equations for T( y, t ) . 
The problem to be considered is: given an initial ensemble of amplitudes 

T n .  a 1 ( 0 )  (where i = (1, , N) labels the ensemble member) determine the 

ensemble average covariance, 

Here 0 is the fluctuation of the temperature field T from the horizontally averaged 

value, T , , , I .  The equations of motion for O:,  and T,, ,  are (1) and (2). The initial 

data for the complex amplitude i I,;;, a r e  Gaussianly distributed in the index (i) 

6 
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with a specified covariance matrix $ ~ ~ z  ( 0 ) .  The initial values for T,, I is such 

that (dT ./dt ) = 0. These initial data a re  consistent with those used for B and 

T in the statistical treatment of the problem. 

n ,  I 

The correspondance between amplitude and statistical calculations is com- 

plete only if the ensemble is homogenous and isotropic in the horizontal. This 

condition permits a replacement of horizontal averages by ensemble averages, 

and is useful in closing the statistical hierarchy of moment equations. By ap- 

pealing to this equivalence B may be interpreted as a fluctuation from an ensemble 

average 

The BnYi were selected from a Gaussianly distributed complex set of numbers 

(with real  covariance $nm ( 0 ) )  constructed by first generating a uniform distri- 

bution of numbers, and using th is  uniform set in connection with the central limit 

theorem to obtain the Gaussian distribution. Care was  taken to assure statistical 

independence of real and imaginary parts of 8. 

The condition of isotropy in the horizontal may be realized in a numerical 

experiment only if the number of a-'s included is very large. Since machine 

calculations necessarily treat a finite number of a-'s it is important to have 

some measure of the degree of isotropy of the experiment. We shall measure 

this by a parameter p defined by, 

- 
P - 1 -  ( A t  - 
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H e r e  A, and A- are the eigenvalues of the matrix, 

For cellular two-dimensional flow p = 0 and for three dimensional isotropic 

flowp = 1. 

The horizontal spectrum is generated by the following formula; 

Here a," and a 

simply by discarding any 

ment a. = l /f i ,  al= fiand 6 = a0/4 . The number of a-'s generated this way 

is 76 and the number of fluctuating-self-interactions treated is 6360 per  vertical 

mode. 

are the x and y components of z. Truncation is achieved 
Y 

for I a 1 < a. o r  I a I > al . In the present experi- 

In the present calculation the Rayleigh number is 3000, and 3 vertical wave 

numbers are used to describe the flow. This modest value of R,  together with 

the small number of vertical wave numbers is dictated by machine time con- 

siderations. It may be objected at this point that R is too small to assess the 

accuracy of a statistical theory, since the flow is likely to be non-turbulent. Our 

point of view here is that even at these relatively small  values of R a meaning- 

ful assessment of a statistical theory may be obtained by studying the relaxation 
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of the system from random initial conditions. A proper statistical theory should 

accurately treat  the build up of correlations from an initial value of zero. We 

shall therefore insist that an acceptable statistical procedure should accurately 

treat  the transient behavior of the system. 

In Fig. 11 and 12 we present results of the present numerical experiment 

for Nu ( t  ) and $, , (a ,  t). These results are an ensemble averaged over 1 0  

experiments. The initial value for the isotropy parameter is p = 0.88; at t = 

2.0, p = 0.80. The results a re  compared in the figures to results for the sta- 

tistical theories. For the latter we have not used the single band approximation 

to t reat  the horizontal wave number spectrum, but instead have used a more ac- 

curate treatment involving three a's . The procedure treats the a- integrations 

in (loa) and (lob) by the mid-point rule, and the a-integration in (2) by a Lagrange 

interpolation formula. The procedure is described in more detail in appendix C. 

The results for the direct interaction approximation for both N( t ) and 

$ 

together with a slight under estimation of $ 2 2  (a, t)  may be traceable to the fact 

that the descretizing procedure for a omits an adequate representation of the 

linear harmonics (those terms for which Zi = 2Zj ). These terms may play an 

important role in the energy transfer between$,, and $ 2 2  , because these modes 

interact directly only through the mean field term. 

(a,  t )  appear to be satisfactory. The slight overestimation of NU at large t , 

The quasi-linear approximation f o r  N u  ( t ) is also fairly good, especially 

considering the simplicity of this procedure. Its results for $11 ( a )  fo r  short 
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times is satisfactory but for long times it gives a $ which sharpens into a 

delta function. Also, it predicts a $22 ( a )  which tends to zero very rapidly as 

time increases (at t = 1.0, $22 - 
cal experiment or the direct interaction). 

while $22 2 for either the numeri- 

The quasi-normal approximation does not appear to behave satisfactorily; 

$11 ( a3, t )  becomes negative for t 1 0.3. 

The direct interaction results are sufficiently close to those of the numeri- 

cal experiment to make it of interest to inquire as to what significance should be 

attached to their difference. Some assessment of the numerical accuracy of the 

direct interaction integrations may be made by varying the method of integra- 

tion in the following two respects: (1) decrease the time step A t ,  (2) use a dif- 

ferent integration method for the a-spectrum. With regard to the first point it 

appears that the time step used in the calculation is sufficiently small to guarantee 

good accuracy for the N u  ( t )  curve: decreasing from 0.05 to 0.025 produces 

only a 0.01% difference in Nu ( t )  . Two tests were made to assess  the accuracy 

of the a-integrations; first, the a-integration of Eq. (2) was modified from the 

Lagrange interpolation method to the mid point rule. This change produced a 

maximum difference in NU ( t  ) of 0.26%. Next, the treatment of the fluctuating terms 

was changed by using a ,o (see Appendix C) averaged over Aa instead of an un- 

averaged one. The combined change produced by both modifications is at mostO.4%. 

The point to test in the numerical experiment is whether as the number of 

(1-modes is systematically increased a significant change in any of the ensemble 
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quantities results. In order to test  this  point, a calculation was made using 

6 = 1/5, which gives 124 

Nu 

from the 76 mode experiment is maximum. The difference is at most 1.6%. 

However, it is not certain that this deviation is statistically significant since the 

standard deviation of N u  in the 76 mode experiment is 2.2%. 

“a’s distributed on ( a O  I a L 2a ) . Some values of 

are indicated in Fig. 11 at the time fo r  which the deviation of the 124 mode 

From the preceding paragraphs it appears that the maximum e r ro r  for the 

direct interaction at R = 3 x l o 3  is at most -3%. The maximum occurs at 

t = 0.5, and the approximation appears better at larger  times. 

VI. DISCUSSION OF RESULTS AND CONCLUDING COMMENTS 

A comparison of the DI results with the numerical experiments described 

in the last section suggests that the DI procedure is in good quantitative agree- 

ment with the exact solution to the thermal convection problem at large Prandtl 

number. The accuracy of the method on this point appears good for the transient 

behavior, as shown by Fig. 11 and 12, as well  as for the steady state value. At  

R = l o 4 ,  the value of the Nusselt number predicted by the DI method is 5.03, as 

compared to 5.45 for the quasi-linear method, and 5.20 for the roll solution with 

a0 = 1m. 
Although R = l o 4  is not considered a large value of Rayleigh number, it 

should be remembered that for the quasi-linear method it is sufficiently large 

for  f ree  boundaries for  the dependence of N u  on R to reach i ts  asymptotic form. 

27 



, I .  - 

This is also true for the two dimensional calculations of Fromm14 at a Prandtl 

number of unity. 

However R = lo4 is not sufficiently large to  draw conclusions about the asymp- 

totic shape of either the mean temperature field, o r  the temperature covariance 

field. The computed temperature profiles for R <-lo4 are properly bounded in the 

sense described in Section IV b , but violations of this bound if they occur at all 

would probably not appear until R 2 lo5. 

The question of whether or  not the numerical solutions of the Direct Inter- 

action equations a r e  indeed static solutions is not entirely satisfactorily settled 

by the present calculation. It would be difficult to  decide this issue entirely 

on the basis of numerical studies in any case, and the fact that the system 

evolves very slowly makes the problem that much more difficult. What is needed 

here is a stability analysis of the steady state solution at large Rayleigh numbers. 

Such a calculation seems rather formidable. Despite these uncertainties, we 

believe the numerical results suggest a non-static solution for the convection. 

The non-static character appears just above critical Rayleigh numbers, and 

becomes more pronounced as the Rayleigh number is increased. The occurrence 

of the time dependence apparently does not commence suddenly at a certain 

critical Rayleigh number as for example would occur in shear flow problems, 

if the Reynolds number is increased beyond a certain critical value. 

In Appendix B, it is pointed out that the DI approximation could give 

(static) results identical to the quasi-linear procedure providedR S. 1-18 x lo4. 
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The #-field would in these circumstances be static and non-statistical. Above 

R = 1.18 x l o 4  such a solution cannot be obtained, as is shown in Appendix 

B. The numerical results of the preceding section are again not conclusive, 

but they indicate that the final asymptotic state is not the quasi-linear type 

solution at any R.  This conclusion is partly suggested by the shape of the 

correlation functions as given in Figs. 4, and 9. A comparison of 4 with 

9 ,  suggests that as R increases, the solutions become less static in char- 

acter. The conclusion is reinforced by the fact that the numerical solution 

for  R = 1.25 x l o4 ,  which is above the critical value R = 1.12 x l o 4  beyond 

which the static quasi-linear solutions cannot exist show the same qualitative 

behavior as solutions below R = 1.12 x l o 4 .  

that the quasi-linear-type solutions are not stable. 

We therefore tentatively conclude 

The preceding paragraph tacitly assumes that the static solutions are the 

quasi-linear solutions, an assumption which is not necessarily true. In this con- 

nection, it may be pointed out that all efforts to find static solutions by iteration 

techniques always convergenced to the quasi-linear results. The attempt 

to find static solutions mentioned here used a vertical modes, one value of a ,  and 

R = 4 x IO3. 

Our investigation suggests that the infinite Prandtl number thermal con- 

vection problem is a peculiar limit case with some features are  probably not 

t o  be found in the finite Prandtl number system at high Rayleigh numbers: 

namely, the extremely slow approach of the system to the steady state, and 
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the fact that the steady state solutions are nearly static. These features a r e  not 

expected at finite Prandtl numbers, since the eddy viscosity then plays an im- 

portant role, and presumably introduces major decorrelation effects. The near 

static nature of the solutions suggests that the infinite Prandtl numbers regime 

may be an inhospitable one for statistical approximations. By the same token, 

it may therefore subject a statistical theory to a severe test. 

The analysis of the quasi-normal procedure indicates that this procedure 

is not an acceptable one to treat the evolution of nonstationary turbulence to 

the steady state for R 2 2  x 10 ’. The procedure may be an acceptable one to 

treat  stationary turbulence for larger R ,  but the present results strongly suggest 

that if this is so, the method is very unstable to small perturbations and could 

not be used to  treat small departures from equilibrium. 
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Appendix A 

Equations of Motion at Infinite Prandtl 

Number and Their Fourier Transform 

The equations determining the velocity field, v and temperature field T 

written in a convenient non-dimensional form are ; 

These are the Boussinesq approximation to the Navier-Stokes equations, In 

this non-dimensional form the only constants which appear in these equations 

are the Prandtl number CT = V / K  and the Rayleigh number R = gaD3 AT/Kv. Here 

n is the thermometric coefficient of expansion, v is the kinematic viscosity, K 

is the coefficient of thermometric diffusivity, AT is the temperature excess of 

the lower plate above the top one, D is the distance between the plates, and g is 

the gravitational acceleration. The non-dimensional variables G ,  T ,  ;, t a r e  

related to the dimensional ones v '  , T' , r ' , and t ' by; 
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T 
T'  = T, 

D 
t '  = r t  

In the limit CT -+a, Eq. (A2) simplifies to a linear relationship between the velocity 

field and the temperature field, and thus in this limit ; may be eliminated from 

the system. The elimination of the velocity field is facilitated by taking the curl 

of the curl of (A2). This leads to, 

0 4  ; = 

Slip boundary conditions for 3 are assumed on the conducting plates. Thus, 

i f  w is the vertical component of ;: 

d 2 w  
d z 2  

- 0  - w - - -  

for 

and 



The boundary conditions on the temperature field assume the boundary plates 

a re  infinitely conducting compared to  the fluid they bound 

T ( x ,  y ,  0 ;  t )  = 0 

T ( x ,  y ,  1; t )  - 1 

Next ,  the temperature field T is split into its horizontal averages plus de- 

viation from this average, 

The velocity field has zero horizontal average. An average over the horizontal 

is indicated by the over bars. On using the above definition of 8, Eq. (A3) splits 

into two components; 

(& - 5 ) T  = - & w 6  a -  

where ; 

- 

dT 
P E - -  d z  

Now let the Fourier transform coefficients, wna , onu, and Tn be defined by 
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and 

Here ~ ( 7 ,  t ) is the vertical component of the velocity field. The horizontal 

component of < may be obtained in terms of B by using (A4) and (A5c). The 

reality of ;( 7 ,  t ) and T( T , t ) implies that 

and 

( T Z ) *  = Tn-" 

Here the asterisk denotes complex conjugation. The equations for wna, Qna, and 

Tn may now be obtained by introducing (A5a), (A5b), and (A5c) into (A3a), and 

(A3b). The results a r e  Eqs. (l), and (2) of the text. 

- 
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Appendix B 

Connection Between Quasilinear and Direct Interaction Approximations 

a. Considerations Based on a Simple Model 

This section describes an analytic approach to the direct interaction equa- 

tions for  a simple model system obtained by deleting all but the first two vertical 

Fourier modes and all but a single horizontal wave number a. This highly 

truncated system is investigated in the hope of gaining some insight into the 

structure of the full direct interaction equations. A direct analytic attack on 

either the quasi-normal or direct interaction equations is too difficult. The 

structure of the quasi-linear equations is sufficiently simple to yield to analytic 

methods? The result of the present analysis is that for the simple two-mode 

model the static DI results for +,, are  identical to the quasi-linear results. 

However, the two methods predict different results for g,,. 

Consider then the simple system for which the only vertical modes are 

n = 1, 2, so that the system (5), (loa), and (lob) consist of the eight functions 

G 2 , ( t  1 t ' ) .  Thefouroffdiagonalterms $ J 1 2 , $ 2 1 ,  G,, ,andG,,areput  equalto 

zero, since the statistical fields $(7 1 7 ' )  may be assumed to be symmetric 

about the mid point, z = 1/2. The equations are, 

+ M 2  Iot d s g r ' ( t ,  s ) $ : ( t ' /  s ) $ t ( t  1 s ) - M 2  dsg," ' ( t I  s ) y F ( t ' !  s ) $ f ' ( t  ~ s )  (Bl)  1 
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where, M = M,,,. In writing (Bl) - (B4), the condition M,,,  f M,, , t M,,, = 0 

has been used. The a index is suppressed and only one vertical index is used to 

specify the G and $ fields. The equations for $( t I t )  are not recorded here; 

they are identical with (Bl) and (B2) with t 

is replaced by (1/2) (d$/dt ), 

t ' except that the term ( d $ / d  t ) 

It is now shown that in the limit t + 00, a particular solution to (Bl) - 

(B4) consists of a static quasi-linear +field, fo r  which $, = 0, and $, is specified 

by 

or 

- 
$1 - R, 657.7 . 

Examination of the steady state form of (Bl) - (B4) indicates that to prove 

this assertion it is necessary that 

and 

j o m d s g 2 ( s )  0 . 
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Equation (B7) is a consequence of (B6) a s  may be seen by examining (B7) and 

using the assumption that as t -+ a, $ becomes a static field. 

To prove (B7) write the steady state form of (B3) and (M), and make a 

change of time scale, 7 = c 2  ( t  - t '), c 2  = 2M2 $l ; 

where, 

These equations may be solved by using Laplace transform theory. Thus, 

introducing 

i1 ( s )  = Jomgl ( t ) e W S t  dt  
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algebraic equations for g , ( s )  and g ( s ) may be obtained, whose solutions a r e  

From (B10) it follows that in the limit s - 0 , g 2  ( s )  - 6, and hence, from (B9) , 

(B7) is valid provided the limit process and Laplace transformation a re  

interchangeable. 

s - 0  

Equations (B10) and (B11) may be inverted to give g , ( t ), and g ( t ) It 

is of interest to have their asymptotic forms: 

g 2  (7)  - - (1/2 fi) 7-3’2 
7-00 

This analysis assumes the stationary state system is static. As pointed out 

before, this assumption is mathematically consistent, but the static solutions 

may be unstable to  small perturbations, which will induce the system to revert  

to a unstable state. 

The question now ar ises  as to whether these simple results a re  genera- 

lizable to the complete multi-mode system. They may be. To see why, 

consider the DI equations assuming that the $-field is that found from 
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4 
quasi-linear theory, $L. It is known 

(say ao) ,  and that it produces (through Eq. (2)) a mean temperature distribution 

upon which any temperature fluctuation field other than $L will decay. We shall 

now argue that in the limit t -+OD the assumption + - $L is self consistent; that is 

to say, i f  +L is inserted into the right hand siae of the DI equations no new terms 

other than +L are  generated at t - a. 

that this field has only a single a 

To establish this point, we need certain properties of the Green's functions for  

+ = +L. The particular properties of c,,: ( t I t '  ) necessary a re  generalizations 

of the integrals of G, and G, established for  the simple model. These are, 

.ao ( t ' )  d t '  -, +a , f o r  (i, j )  = odd,  (B14) 
t -m 

t 

lim 1 gi: ( t ' ) d t '  -. - 0  , fo r  ( i ,  j )  = odd. P15)  
t a m  

The even-odd components of gi7 are zero, since $L has no even-odd components. 

For a # ao, the integrals are finite. 

The conditions under which (B14) and (B15) are valid a r e  discussed in sec- 

tion b of the present appendix. The results derived there indicate that these equa- 

tions may be valid for R 51.1 x lo4  ; .but cannot be correct for R 2 l .1 X l o 4 .  

The consistency of the assertion that the DI solutions a r e  $, is now examined. 

To do this, it will suffice to examhe (Bl) - (B4) provided we recall that 
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these equations should have appropriate a integrals as given in (loa) and (lob). 

Note that in (Bl, B4) the fluctuating self interactions make two types of con- 

tributions to $ a ;  the input term, containing the factor ga, and the drain term, 

containing the factor $u (t '  I s) . For  example, in (Bl) the second term on the 

right hand side is an input term, and the last  two terms are  classified as drain 

terms. The drain terms may be positive (as is the third term on the right hand 

side of (Bl)) but in the main, they are negative. Similarly, the input terms a r e  

mainly positive (they a r e  strictly positive if the non-diagonal elements of $ and 

g a r e  suppressed). Consider first the odd-odd equations. The input terms 

all vanish, since these contain even-even indexed $ fields, and $L contains no 

such components. The drain term vanishes because of (B15). Next consider 

the even-even equation. The input term vanishes because of (B15), and the 

drain term vanishes because there is no even-even component in . 
For u # a0, the odd-odd components receive zero input, and a finite drain. 

Hence, they will vanish in the limit t +a. The even-even components do receive 

an input, however, the drain term (the last term in (B2)) becomes indefinitely 

large because of (B14): hence the even-even components - 0 as t -a. The in- 

put te rms  cannot become indefinitely large because if a # a,, the time integrals 

of Ca are finite. 

The above discussion suggests that there may exist static solutions to the 

DI equations which in the limit t -+ a which a re  identical with the quasi-linear so- 

lutions. This does not imply that i f  $L is introduced a s  initial data the solution 
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c ,c . 

will remain equal to $JL. This is because the DI equations involve the history of 

the system. The present discussion suggests that in this case, $ will develop 

transient values # $JL which will decay as t -a, 

Nothing has been said in the above discussion about the stability of the $L 

field, o r  indeed of any static solution to the DI equations. Such information would 

be very valuable. 

b. Asymptotic Form of Green's Function for $L 

This section examines the form of the DI Green's function Ci , ( t  - t ' ), for  

the quasi-linear intensities, $L. The goal is to seek conditions under which (B14) 

and (B15) are valid. It is first  shown that if  G i  , ( t  ) tends to a finite limit as 

t -.a, then 

for 

and 

for 

J ci j  ( t ) d t  = o 
0 

( i , j )  - - even . 

This is done by examining the Laplace transforms of G,, (t ) : 

. 
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The behavior of G, ( t ) for t - 03 may then be inferred by means of the Abel 

1 9  theorem, 

if v > -1.0, and 

l i m  t [ G ( t ) - G ( t  -1)] - 0 , 
t - m  

and 

l i m e - P t G ( t )  -, 0 , 
t --.a 

for 

R e a l ( p )  > 0 

The Laplace transform of the direct interaction Green's function Eq. (lob) 

for $J = &, may be written in matrix form as, 

( s t p ) G  = I f C C C G  tB20) 

where ; 

/-Ln m 

I n m  

- un 6 n m  f Brim 

n m  6 
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Cn m 

here Bp is the static quasi-linear temperature fluctuation amplitude. In deriving 

(B20) use of the condition $nm = On em for the quasi-linear system has been made. 

The mean field for  the quasi-linear interaction, Bnm i s  also made up of the &field 

in accordance with (2). Recall now that On has only odd components. Then by 

using the definition of M n p q  (see Eq. ( 2 ) )  it  may be shown that Cnm # 0 only if 

n + m  = odd. This permits (B18)to be split apart into even and odd components. 

Let Pa be a projection matrix which deletes from any vector the even-Fourier 

components, and let P, be the compliment of pa, pa + p, = I. Then two equations 

for  the even-even and odd-odd components of G may be found by pre and post- 

multiplying (B20) by first Pa and then by P, : 

- -  - ( sIa +pa)  Ga - I a  t cab G, Cba ca 
- -  

(SI, -Fb) G, - - I, f Cba Ga Cab G, 

where 

- 
Cab = Pa CP, , 

- 
Cba = pbcpa l e t c .  
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The derivation of (B21) and (B22) uses the fact that Pa CPa = P, CPb= 0. Equations 

(B21) and (B22) may be collapsed by systematically deleting the zero interestitial 

rows and columns. The collapsed equations a re  identical in form to (B21 and (B22), 

with Ia and 1, replaced by I: 

The collapsed form of C's a re  

and 

The solution of (B23) and (B24) for Ga is ;  

where 

and 



It is convenient to write the matrix elements of Ca in the laminar eigenmode 

representation. The elements a re  

In Eq. (B26), pb  is the kth eigenvalue of the odd-odd part of p, 1 j > is its as- 

sociated eigenvector, and< k a  \ denotes the eigenvector to the adjoint matrix, ;. 
The yils are eigenvalues of the matrix r, Iyi > denotes the corresponding eigen- 

vector, and < yi I the eigenvector of the adjoint matrix r. 
n, 

Equation (B24) maybe cast in alternate forms by using the properties of r: 

where ; 

E = CbL' ( s  + pb) Cab' 

The sign of the radicals in (B26), and (B28) is to be chosen so that 

lim ( < k a  IC,/ j a > )  + S k j  , 
s - 0  
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which corresponds to the condition initial condition on G i j  ( t ) ,  G i j  ( 0 )  = Z i  . 
Equations (€327) and (B28) may be established from (B26) by using the definition 

of r and the relations, 

Y 
' i  (ri W'I j , )  (ri I j , )  - - 

s + p i  
- 

We a re  now in a position to examine the limit of Ga ( s )  as s + 0. First ,  note 

f rom(B26)and(B27) tha t i fy i ,  (k, I E I Y ~ ) , ( Y ~  IE-'I j a ) , ( k ,  I y i ) , a n d  

(yi I j , )  remain finite a s  s + 0, so does (k, ICa 1 j , )  for either p: or  p,k # 0. 

We assume temporarily that the above is so and shall return later to a (numerical) 

verification. Thus, under the above conditions all the laminar eigenmode matrix 

elements of G will remain finite a s  s-+ 0 with the exception of (p: = 0 I Ga I p t  = 0). 

Furthermore, from (B25), it is expected that at least one of the yi 's ,  say y1 be- 

comes linear in s as  s + 0, since the first factor in r, ( pa + s )  has one zero 

eigenvalue as s + 0, namely that corresponding to p: = 0. We assume tem- 

porarilythat y1 + - a s as  s + 0, where a > 0, and suppose that y1 ( s )  remains 

negative and real  for sufficiently small s . Then according to (B25) and (B26), 
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Here (B28) is used only to exclude the possibility that G + l/s as s--  a. 

Equations (B29) and (B19) may now be used to infer the behavior of C( t ) as 

t -a: 

Or,  in terms of the Fourier representation of Ga, 

where 

Equations (B30) and (B31) a re  valid provided the conditions of the Abel theorem 

are  met; i.e., provided the Laplace transform integral of G,',") ( t ) exists in the 

right half t -plain, exclusive of the imaginary axis. Examination of (B26) shows 

that a necessary condition for this to be so is that the quantity y i  ( s )  (yi  ( s )  - 4) 

does not become negative for any s > 0 and any i. If the above conditions are not 

satisfied, Eq. (B26) implies that C( s )  has a branch cut on the real s-axis which 

must intrude into the right half plane. The branch cut will make a contribution 

to C( t ) which will behave at large t like fi e a t  . In order to obtain sufficient 

conditions for (B31) to be valid, it  must be shown that none of the possible sin- 

gularities of C( s )  in the right hand plane contribute to the inverse Laplace 

transform. 
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Equation (B2) for the even-even components of G i j  may now be verified by 

- inserting (B15) into (B9) and taking the limit as s - 0. From this it follows that 

for 

( i ,  j )  even . 

(B2) follows immediately by using (B3) in the limit s + 0. 

To complete the discussion of (Bl) and (B2) we must clear up several as- 

sumptions made in the discussion relating to the matrices A, E,  and r. In order 

for (Bl) and (B2) to be valid, A,, > 0, E must be non-singular, and the eigen- 

value spectrum of r( S )  must be such as to make ,‘yz ( S) - 4yi ( s )  real for 

s > 0. These points may be explored numerically in lieu of an analytic procedure. 

The numerical results on this point indicate that for R < 1.18 x l o 4  the as- 

sumptions enumerated in the above paragraph are valid. The computed y i  spectra 

consists of negative real  numbers, for sufficiently small s > 0, and explicit cal- 

culation shows that Ai, > 0. For R > 1.18 x l o 4  the behavior of y 1  ( s )  is not con- 

sistent with the above condition on the yils .  For R > 1.18 x l o4 ,  y1 is real and 

positive at small values of s and becomes real and negative as s -, +a. The 

behavior of y1 ( s )  for s -+ 0 as a function of R is depicted in Fig. (Bl). 

The numerical calculations from which these conclusions were drawn consist 

of using an eight mode Fourier representation of the quasi-linear amplitude sys- 

tem, O n .  The relevant matrices Cab, Cba,  r, etc. were  then truncated 4 x 4 
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matrices. Several runs using a four mode Fourier representation of On indicated 

that the eight mode representation is adequate. 
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Appendix C 

Numeric a1 Procedure 

This section describes the procedure for numerically integrating the direct 

interaction Eqs. (5), (loa), and (lob), starting from arbitrary initial conditions 

for the covariance matrix $nm ( 0  1 0). Integration of the.equations for the quasi- 

linear and quasi-normal approximations may be made by simply setting to zero 

certain of the DI terms (as in the quasi-linear approximation) o r  replacing the 

certain terms by simplified expressions (as for example, in the quasi-normal 

method Eq. (11) is used to approximate the non-simultaneous correlation coef- 

ficients in te rms  of simultaneous ones). 

Equations (5), (loa), and (lob) a re  a set of integro-differential equations for 

$,: (t I t ' ). They are discrete in the vertical index ( n ,  m )  and continuous in 

the indices (or arguments) a ,  and ( t  , t ') . In treating these equations numerically, 

a suitable truncation procedure for the wave numbers (n ,  2) , and a discretizing 

procedure for a ,  t ,  and t '  must be prescribed. The procedure now described 

does this in a way so a s  to preserve the conservation properties of the flow. 

The flow is assumed to be isotropic in the horizontal direction, so that $a 

and gQ depend only on the magnitude of d. 

To truncate the system in wave number ( n ,  a )  discard any $nm or  gnm func- 

tion if either n o r  m > M  or if  121 >al or  121 < a o ,  where a. < al. In practice, 

the finite machine storage capacity impose a rather severe limit on the number 

of individual dependent variables treated. In the present analysis it was necessary 
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to take M 55 ,  to f i t  the program into the IBM 36065 fast storage. According to 

previous numerical results for the quasi-linear method, M = 5 is sufficient to 

accurately describe the mean temperature field up to a Rayleigh number of 

-R = 104. 

To procede further, the basic Eqs. (5), (lo'a), and (lob) a r e  reduced by using 

the assumption of horizontal isotropy. These are of the form 

da'  da" 
a B" $" + Jot' ds p ( a ,  a ' ,  a " ) A ( a ,  a ' ,  a " )  g"$" '  $"" 

t 6 da' a 
p ( a ,  a ' ,  a " ) C ( a ,  a ' ,  a " )  $" g"' $"" 

da'da" 
a p ( a ,  a ' ,  a " ) C ( a ,  a ' ,  a " ) g a  4"' g"" 

where ; 

Here, the vertical indecese ( n ,  m) as well as the time arguments are suppressed. 

The latter are ( t  ' I s ) ,  ( t  I s), and ( t  I s ) ,  in the order prescribed by (Cl), and 

(CB). The factor p ( a ,  a , a " )  is the density of triangles whose sides a re  of 
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length a ,  a ' ,  and a". It must be taken to be zero if any of the factors in its 

denominator is zero. 

a. Single Band Approximation to Horizontal Spectrum 

The horizontal wave numbers spectrum may be most easily approximated 

by assuming for a simple square wave form; 

+ = (n(a;-a;))-'$ , a. 5 a a l  

= 0 , otherwise . (C4) 

The procedure used in this paper is as follows: 

Multiply (Cl) and (C2) by ( 2 ~ a  d a )  and integrate over a ,  using (C4) to ap- 

proximate the +-spectrum in the convolution terms. 

Approximate ga ( t I t ' ) by a constant-in-a-value, g( t I t ' ). There results 

equations for + and g which differ from (Cl) and (C2) by first  deleting the a 

integrations (with the p-factor) and then using averaged coefficients in place of 

v a, Ba, A and C. The average coefficients a re ,  

- 
A J J J d a d a '  d a " p ( a ,  a ' ,  a " ) A ( a ,  a ' ,  a" ) /JJJp(a ,  a ' ,  a " ) d a d a '  da" . * .  
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The mean field Eq. (C3) is similarly averaged with the result that 7, replaces 

J,". It may be verified directly that the above averaging procedure preserves 

the conservation property given by (3). 

b. Approximation of a-Integration Using Several a , .  

In this case it is necessary to work with + ( a )  and ; ( a )  where, 

and 

These quantities satisfy equations like (Cl) and (C2) except that p is replaced by 

p p / ( 4 n 2  aa' a " ) .  The initial condition on zis z ( a ,  0 )  = %a. Next, (Cl) and 

(C2) a r e  evaluated at ak = a. + (2k - l ) n / N  and the first  integral in (Cl) is ap- 

proximated by, 

% 

Here a. and 2ao a re  lower and upper limits beyond which the integrand is con- 

sidered to make a negligible contribution to the integral. Similar approximations 

are  made in  the other integrals of (Cl) and (C2). 

The integration in (C3) is simple enough to  make a more accurate integration 

formula practical. In this case we use the points + ( a , )  , +(a , ) ,  and $ ( a 3 )  to make 

a quadratic interpolation of + ( a ) .  The effect of this is to change J, ( a , )  to J, ( i )  
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where, 

J , (a)  9 ( j ,  k # i )  . 

These integrals are  of standard form. 

c. Time Integration. 

The time integration of (Cl)  and (C2) is straightforward and has been de- 

scribed elsewhere in more detail by Kraichnan. '' The domain of the integration 

i s t ' t ' .  F o r t  = t ' , G ( t /  t ' ) =  l , a n d + ( t  I t ) i s g i v e n b y ( C l ) w i t h t h e t e r m  

(d+/d t ) replaces by (1/2) (d+/dt ). Equations (Cl)  involves t I t ' ), t ' > t 

in the convolution integral in the f i rs t  term on the right hand side. Such terms 

a r e  evaluated by using the fact that +,, ( t  1 t ' ) = +mn (t ' 1 t ), which follows from 

Eq. (4). 

Next, a mesh of points ( t i ,  t ) is placed in the ( t  , t ' ) plane, and, using 

them, the time integrals are  approximated by the trapezoidal rule. The mesh 

point spacing A is taken to be uniform and the same in both time directions. To 

obtain + ( t i  I t j )  from + ( t  i-l 1 t j), formally integrate (Cl) over the interval 

( t i- ', t i ) ,  replacing the right hand side by its average value on ( t  i- ', t i ) .  The 

result is, 

where F( t  . ) represents the right hand side of (Cl ) .  This is an implicit equation 

f o r + ( t i  I t j ) ,  s i n c e F ( t , )  involves + ( t i  I t j ) i t s e l f .  I tmus tbe  solvedby 
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iteration. The procedure used here is to approximate $(t  

order iteration using F ( t  ) = F (t i- 

guarantees accuracy of order A 2 .  Aside from the exponential factors this 

scheme is the standard predictor - corrector procedure, in which the predictor 

I t j )  by the second 

to initialize the right hand side. This 

is first order and the corrector is of second order. The presence of the ex- 

ponential factors stabilizes the behavior of the large wave number modes. 

The initial values of $nz ( 0  I O )  are arbitrary. For most of the calculations 

they are chosen to be those values obtained from exact solutions to the hexagon 

amplitude equations, in which only a single horizontal wave number is included. 

That is to say, 

$,\ ( 0  I 0) = is B 
n m  

This choice is a convenient one in that the system does not develop violent 

transient oscillations from these initial data. This permits a relatively large 

mesh size to be used. 

It is known that the hexagon solutions to the convection problem O ( 7 ,  t ) , 

are asymmetric about the midpoint z = 1/2, with the direction of asymetry ar- 

bitrary. This asymmetry is eliminated by averaging (C 5) over the direction of 

asymmetry, which is equivalent to setting to naught the even-odd components of 

W5). 
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FIGURE CAPTIONS 

Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Fig. 10 

Fig. 11 

Nusselt number as a function of Rayleigh number R for: (a) the direct 

interaction, @) quasi-linear , (c) quasi-normal methods. The calcu- 

lations contain 2 vertical and one horizontal degrees of freedom. 

R,, (8 I t ) and R,, (8 i t)  for the direct interaction procedure for R = 103. 

Green's functions for direct interaction method for R = l o 3 .  Param- 

eters of the calculation are  the same as in Fig. 2 

Direct interaction correlation coefficients R,, ( t  I t - 1.5)  and 

R,, ( t  I t - 1.5) for R = 4 x i o 3 .  

Direct interaction correlation coefficients R,, ( t  I t - 1.5)  and 

R,, ( t  1 t - 1.5)  for same initial conditions as on Fig. 3. 

Direct interaction Green's functions C ~ , C ,, and C,, for R = 4 x l o 3 .  

Direct interaction Green's functions G22, and G,, for R = 4 x l o 3 .  

Evolution of Nusselt number for R = l o 4  according to Direct Interac- 

tion approximation. 

Direct interaction correlation functions R, ( t  1 0.75 - t ) and 

R,, ( t  1 0 . 7 5 -  t ) f o r R  = l o 4 .  

Evolution of ( t  I t )  according to the quasi-normal approximation 

at R = 2 x l o 3 .  Run contains two vertical and one horizontal wave 

numbers. 

Evolution of the Nusselt number for R = 3 x l o 3 ,  according to; (1) 

Numerical experiment (solid line), (2) The direct interaction (dashed 
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line), (3) Quasi-linear approximation points enclosed in triangles, 

(4) Quasi-normal approximation (dotted line). Points enclosed in 

squares give Nu ( t )  for  124 a-mode experiment. 

Evolution of y511 ( 0 ,  t )  for R = 3 x 1 0 4 .  Solid curve represents the 

numerical experiment and the encircled points are direct interaction 

results. 

(.yl ( s ) / s  ) for s = 

Fig. 12 

Fig. B1 as a function of R.  
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